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at the classical limit
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Abstract. The aim of the present work is to derive the first quantum correction to the fourth
virial coefficient for fluids of molecules interacting according to the square-well potential of
arbitrary dimensionalityd. In this paper, we show that the basic method of Hemmer and
Jancovici, which was followed by Gibson, can be extended to cover more general intermolecular
potentials. The extension of the formalism is straightforward, but some consideration has to be
given to the problem of how to truncate the resulting expansion to get all the quantum corrections
to a given order inλ. The first quantum correction to the fourth virial coefficient is obtained in
arbitrary dimensionality(d = 1, 3).

1. Introduction

The quantum corrections to the equation of state are usually calculated by using the Wigner–
Kirkwood (WK) method [1, 2] when the potential is analytic and by the Hemmer–Jancovici
(HJ) method [3, 4] when the potential is a hard-sphere one. The WK method fails in the case
of nonanalytic potentials. Gibson [5] has extended the method of Hemmer and Jancovici
to cover more general intermolecular potentials and calculated the first quantum correction
to the virial coefficients for the square-well plus hard-core potential.

Another possible method is the ‘modified’ WK expansion developed by Derdeian and
Steele [6] and further extended by Singh and Sinha [7], in which the hard-sphere potential
is used as a reference potential and the hard-sphere wavefunctions as a basis set. Singh and
Sinha [7] used this method to calculate the quantum corrections to the third virial coefficient
for hard-core fluids. Singh and Sinha [8] have used the modified WK series to calculate
the quantum corrections to the third virial coefficient for a fluid with a square-well plus
hard-core potential. Nilsen [9] calculated the first quantum correction to the classical value
of the second virial coefficient for the square-well potential.

In arbitrary dimensionalityd, Luban and Baram [10] derived exact expressions for
the third virial coefficient and two of the three terms contributing to the fourth virial
coefficient. Ree and Hoover [11] calculated the fourth virial coefficient for a hard sphere
(1 6 d 6 9). Hussien and Ahmed [12] used the method of Luban and Baram [10] to
derive exact expressions for the second and third virial coefficients, and they calculated a
general expression for the terms of the fourth virial coefficient for fluids to the square-well
potential of arbitrary well width and arbitrary dimensionalityd. Recently, Sinha and Sinha
[13] calculated the quantum corrections to the properties of a densed-dimensional fluid of
hardd-spheres.
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In this paper, we generalize the method given by Gibson [5] using the basic method of
Hemmer and Jancovici [3, 4] to calculate the first quantum correction to the fourth virial
coefficient for the square-well potential of arbitrary dimensionality. In section 2, we review
the work of Gibson [5]. In section 3, we present a calculation for the square-well plus
hard-core potential ind-dimensionality. The paper ends with numerical results in some
special cases and the figures.

2. Expansion of the partition function

Gibson [5] showed that the basic method of Hemmer and Jancovici [3, 4] can be extended
to cover more general intermolecular potentials. The extension of the formalism is
straightforward, but some consideration has to be given to the problem of how to truncate
the resulting expansion to get all the quantum corrections to a given order inλ. It should
be noted that in his work he considered only the direct part of the virial coefficients—the
effects of quantum statistics are completely neglected. If the potential is strongly repulsive
at small distances (as is the case for all realistic potentials), it is expected that statistical
effects will be negligible at temperatures where a series in powers ofλ is useful. This
has only been proved for the second virial coefficient [14], but it seems clear that higher
coefficients will exhibit a similar behaviour, since the physical mechanism responsible for
the rapid suppression of statistical effects with increasing temperature is present in all cases
[15].

Gibson [5] considered a system ofN identical particles each of massm in a container
of volume�. Let the Hamiltonian be

HN = N0
N + VN (1)

whereH 0
N is the kinetic energy of theN particles, andVN is the total potential energy. Let

WN(1, 2, . . . , N) = λ3N 〈r1, . . . , rN |e−βHN |r1, . . . , rN 〉 (2)

whereβ = 1/KT andλ = (2πh2β/m)1/2. The classical limit ofWN is

WC
N (1, 2, . . . , N) = e−βVN (r1,...,rN ). (3)

A ‘modified’ W function Wm
N (1, 2, . . . , N) is defined by the relation

WN = WC
N Wm

N . (4)

(If the pair potential has a hard core, bothWN andWC
N will vanish for particle configurations

in which hard cores overlap. In this case,Wm
N can be taken as zero also.) We note that

since bothWN andWC
N possess the ‘product property’,Wm

N will possess it too. This means
that when the particles split into two groups whose surfaces are separated by a distance
that is large compared with the potential range and the thermal wavelengthλ, Wm

N can be
expressed as a product of two terms, one referring to each group.

In the usual treatment of a quantum gas,WN is expressed in terms of Ursell functions
Ul [14]. In an analogous way, we expressWm

N in terms of ‘modified’ Ursell functionsUm
l :

Wm
1 (1) = Um

1 (1) = 1 (5)

Wm
2 (1, 2) = 1 + Um

2 (1, 2) (6)

Wm
3 (1, 2, 3) = 1 + Um

2 (2, 3) + Um
2 (3, 1) + Um

2 (1, 2) + Um
3 (1, 2, 3) (7)

Wm
N (1, . . . , N) = 1 +

∑
Um

2 (i, j) +
∑

Um
3 (i, j, k) +

∑
Um

4 (i, j, k, l)

+
∑

Um
2 (i, j)Um

2 (k, l) + · · · . (8)
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Equation (8) is obtained by taking a partition of theN particles in groups, making the
corresponding product ofUm

l functions, and summing over all possible partitions. These
equations can be solved successively forUm

1 , Um
2 , . . .:

Um
2 (1, 2) = Wm

2 (1, 2) − 1 (9)

Um
3 (1, 2, 3) = Wm

3 (1, 2, 3) − Wm
2 (2, 3) − Wm

2 (3, 1) − Wm
2 (1, 2) + 2 (10)

etc. Since theWm
l possess the ‘product property’, it follows thatUm

l will possess the ‘cluster
property’. This means thatUm

l approaches zero for a configuration in which thel particles
are separated into two or more groups sufficiently distant from each other.

We define

Q =
∫

WN(1, . . . , N) d3Nr (11)

QC =
∫

WC
N (1, . . . , N) d3Nr (12)

gl(1, . . . , l) = (�l/Qc)

∫
Wc

N(1, . . . , N) d3rl+1, . . . d3rN . (13)

Note thatgl is a classical correlation function. Inserting the expansion (8) into (4), and
integrating over the coordinates, gives

Q = Qc

{
1 + �−2

∑ ∫
g2(i, j)Um

2 (i, j) d6r + �−3
∑ ∫

g3(i, j, k)Um
3 (i, j, k) d9r

+�−4
∑ ∫

g4(i, j, k, l)[Um
4 (i, j, k, l) + Um

2 (i, j)Um
2 (k, l)] d12r + · · ·

}
.

(14)

We wish to use (14) to calculate quantum corrections toQ at moderately high
temperatures, whereλ is small. In general, these corrections will take the form of a series
in powers ofλ. The expansion (14) will be useful only if it can be truncated in some well
defined way, to give the total correction to a specified order inλ. Theλ contribution from
a factorUm

l depends on the potential, and we now consider various cases.
The simplest case is that of hard spheres, for whichUm

l is identical to the usual Ursell
functionUl . The contribution fromUl to a term in (14) is determined by two factors. First,
the correlation functions vanish for a particle configuration in which hard cores overlap,
and second,Ul vanishes whenever the particles separate into two groups with a distance
� λ between surfaces. This means that the entire contribution comes from configurations
in which the distance between centres of neighbouring spheres isr, wherea < r < a + λ

(a is the sphere diameter). It follows that the contribution fromUl to an integral in (14) is
of orderλl−1.

Turning now to more general potentials, we note first that, by their construction, the
Um

l vanish except for configurations in which the particle separations are such that quantum
effects are present. For example, for a pure square-well potential [v(r) = −ε, r < b,
v(r) = 0, r > b], quantum effects are negligible unless neighbouring particles are separated
by a distancer, where|r − b| 6 λ. In this case, the contribution fromUm

l is of orderλl−1.
This result can be extended to a potential which is a finite chain of rectangular wells, with
or without a hard core; again the contribution fromUm

l will be of orderλl−1.
The situation becomes less clear when we go beyond these simple potentials. Consider a

potential which is analytic and sufficiently repulsive at the origin, so that the WK expansion
exists. The quantum corrections toQ will then be given as a series in powers ofλ2. It
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is necessary to include contributions from bothUm
2 andUm

3 in order to get the first-order
correction term.

Finally, consider a potential which is analytic except at a finite number of points. One
might argue that the dominant quantum effects occur in the neighbourhoods of these points,
and thatUm

l will contribute to orderλl−1, as in the rectangular well case, but this conclusion
is only tentative. However, it seems fairly certain that the first-order correction (of order
λ) will come entirely fromUm

2 and since this is about all one would be able to calculate in
practice, the method is applicable.

Let us now assume that the potential is such that the first-order correction is contained
entirely in theUm

2 term. Then (14) gives

Q = Qc[1 + N(N − 1)A2/� + 0(λ2)] (15)

where

A2 = 1

2�

∫
g2(1, 2)Um

2 (1, 2) d6r. (16)

For a spherically symmetric pair potential, this can be written

A2 = 2π

∫ ∞

0
g(r)Um

2 (r)r2 dr (17)

whereg(r) is the (classical) radial distribution function. The pressure is given by

P = P c − ρ2

β

∂

∂ρ
(ρA2) + 0(λ2). (18)

Expanding the pressure in a virial series,

βP = ρ +
∑
n>2

Bnρ
n. (19)

Um
2 (r) can be found from the solution of the quantum-mechanical two-body problem.

From (9), it can be written in the form

Um
2 (r) = 23/2eβv(r)λ3G(r, r; β) − 1 (20)

wherev(r) is the two-body potential and

G(r, r; β) ≡ 〈r|e−βHrel
2 |r〉 (21)

whereHrel
2 is the Hamiltonian for the relative motion of the two particle system.

3. Square-well potential with hard core

The potential is

v(r) =


∞ r < σ

−ε σ < r < a1σ

0 r > a1σ

(22)

whereσ is the diameter of the hard sphere,a1 is the range of the attractive well and is
usually taken to be 1 and 2, andε is the well depth.
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The functionλ3G(r, r; β), to first order inλ, was calculated [5]. Then, we find

Um
2 (r) = −

√
2λe−βεL−1

α

[
1

402
δ(r − σ+) − 1

402

0 − γ

0 + γ
δ(r − a1σ−) + 0

(
1

03

)]
σ < r < a1σ

Um
2 = −

√
2λL−1

α

[
1

4γ 2

0 − γ

0 + γ
δ(r − a1σ+) + 0

(
1

γ 3

)]
r > a1σ

(23)

whereL−1
α is the inverse Laplace transform operator defined as

L−1
α ≡ 1

2π i

∫ c+i∞

c−i∞
dp eαp

α = λ2/2π , γ = p1/2 and02 = γ 2 − mε/h2. Substituting in (17), doing ther integration
and then the inverse transform, gives

A2 = −21/2π [eβεσ 2Y (σ) + 2(βε)(a1σ)2Y (a1σ)]λ + 0(λ2) (24)

where

2(x) ≡ 1 + ex − 2ex/2I0(
1
2x). (25)

I0 is the modified Bessel function of the first kind and order zero. We have also introduced
Y (r), which is related to the radial distribution functiong(r) by

Y (r) = g(r)eβv(r). (26)

In the case where the hard core is present, one can obtain explicit expressions for the
first few virial coefficients by making use of the density expansion of the radial distribution
[16]. We write

Y (r) = Y0(r) + ρY1(r) + ρ2Y2(r) + · · · (27)

which leads to

Bn = Bc
n + (n − 1)21/2πσ 2[eβεYn−2(σ ) + 2(βε)a2

1Yn−2(a1σ)]λ + 0(λ2). (28)

3.1. The first quantum correction to the fourth virial coefficient

We evaluate the first quantum correction to the fourth virial coefficient in arbitrary
dimensionality. From Luban and Baram [10], if the integrand of ad-dimensional integral
possesses spherical symmetry, then∫

H(r) dr = Cd

∫ ∞

0
H(r)rd−1 dr (29)

whereas ifH is a function ofr and a single polar angleθ ,∫
H(r, θ) dr = Cd−1

∫ ∞

0
rd−1 dr

∫ ∞

0
H(r, θ) sind−2 θ dθ. (30)

The quantityCd is the surface area of a unit sphere inRd , defined by

Cd = 2πd/2

0(d/2)
. (31)

By using (29), equation (16) can be written as

A2 = Cd

2

∫ ∞

0
g(r)Um

2 (r)rd−1 dr. (32)
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Then equation (24) becomes

A2 = − Cd

2(d+1)/2
[eβεσ d−1Y d(σ ) + 2(βε)(a1σ)d−1Y d(a1σ)]λ + 0(λ2) (33)

whereY d means thatY is d-dimensional. By using (28) and (33), we get

Bq
n = Bc

n + (n − 1)
Cdσ

d

2(d+2)/2
[eβεY d

n−2(σ ) + 2(βε)ad−1
1 Y d

n−2(a1σ)](λ/σ) + 0(λ2). (34)

In cases of(n = 2, 3) this work is at press [17] and the results are

B
q

2 = Bc
2 + Cdσ

d

2(d+2)/2
[eβε + 2(βε)ad−1

1 ](λ/σ) + 0(λ/σ)2 (35)

and

B
q

3 = Bc
3 + 2πdσ

3d
2 +1

0(d
2)

{eβε [(1 + f )2W
d/2
d/2,d/2,d/2−1(σ, σ, σ )

−2a
d/2
1 f (f + 1)W

d/2
d/2,d/2,d/2−1(σ, a1σ, σ )

+ad
1f 2W

d/2
d/2,d/2,d/2−1(a1σ, a1σ, σ )]

+a
d/2
1 2(βε)[(1 + f )2W

d/2
d/2,d/2,d/2−1(σ, σ, a1σ)

−2gd/2f (f + 1)W
d/2
d/2,d/2,d/2−1(σ, a1σ, a1σ)

+ad
1f 2W

d/2
d/2,d/2,d/2−1(a1σ, a1σ, a1σ)]}(λ/σ) + 0(λ/σ)2 (36)

where

W
d/2
d/2,d/2,d/2−1(σ, σ, r) =



2−d/2rd/2−1

[
1

0(1 + d/2)

− r

σ0(1/2)0(d + 1)/2)

× 2F1

(
1 − d

2
,

1

2
,

3

2
,

r2

4σ 2

) ]
0 6 r 6 2σ

0 r > 2σ

(37)

W
d/2
d/2,d/2,d/2−1(a1σ, a1σ, r) =



2−d/2rd/2−1

[
1

0(1 + d/2)

− r

a1σ0(1/2)0(d + 1)/2)

× 2F1

(
1 − d

2
,

1

2
,

3

2
,

r2

4a2
1σ

2

) ]
0 6 r 6 2a1σ

0 r > 2a1σ

(38)

and

W
d/2
d/2,d/2,d/2−1(σ, a1σ, r) =


2−d/2rd/2−1

a
d/2
1 0(1 + d/2)

0 6 r 6 σ(a1 − 1)

I σ 6 r 6 σ(a1 + 1)

0 r > σ(a1 + 1)

(39)
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where

I = a1σ
2

d2

{
d

a1σ

[
(rσ )d/2−1

(2π)1/2(a1σ)d/2
(1 − x2

1)
d−1

4 P
1−d

2
d−3

2
(x1)

]
− (rσ )d/2−2

(2π)1/2(a1σ)d/2−1
(1 − x2

1)
d−3

4 P
3−d

2
d−3

2
(x1)

+d(ra1σ)d/2−1

(2π)1/2σd/2
(1 − x2

2)
d−1

4 P
1−d

2
d−3

2
(x2)

+ (a1σ
2)d/2−2

(2π)1/2rd/2−1
(1 − x2

3)
d−3

4 P
3−d

2
d+1

2
(x3)

}
(40)

and

x1 = r2 + σ 2(1 − a2
1)

2rσ
x2 = r2 + σ 2(1 + a2

1)

2a1rσ
x3 = σ 2(1 + a2

1) − r2

2a1σ
.

3.2. Calculation ofBq

4 (T )

Whenn = 4 in equation (34), we get

B
q

4 = Bc
4 + 3Cdσ

d

2(d+2)/2
[eβεY d

2 (σ ) + 2(βε)gd−1Y d
2 (a1σ)](λ/σ) + 0(λ2) (41)

whereY d
2 means thatY2 is d-dimensional, butY2 is

Y2(r) = Y21(r) + Y22(r) + Y23(r) (42)

where

Y21(r) = 1
2

∫ ∫
f (r12)f (r13)f (r24)f (r34) dr3 dr4 (43)

Y22(r) =
∫ ∫

f (r12)f (r23)f (r34) dr3 dr4 (44)

and

Y23(r) = 2
∫ ∫

f (r12)f (r13)f (r23)f (r34) dr3 dr4 (45)

wheref (r) is the Mayer function which is defined as

f (r) = exp

[−v(r)

KT

]
− 1. (46)

By using equation (22) we get

f (r) =


−1 r < σ

f = exp(βε) − 1 σ < r < a1σ

0 r > a1σ .

(47)

3.2.1. Calculation ofY21(r). By using the techniques of Katsura [18] we can evaluate
Y21(r) analytically. Thed-dimensional Fourier transformFd(k) of f (r) is defined by

Fd(k) =
∫

f (r) exp(ikr) dr

Fd(k) =
∫

f (r) exp(ikr cosθ) dr. (48)
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From (30), (47) and (48) we get

Fd(k) = Cd−1

{
−

∫ σ

0
rd−1 dr

∫ π

0
exp(ikr cosθ) sind−2 θ dθ

+f

∫ a1σ

σ

rd−1 dr

∫ π

0
exp(ikr cosθ) sind−2 θ dθ

}
. (49)

Using the following standard identities for the Bessel function:

Jν(x) =
x
2

π1/20
(
ν + 1

2

) ∫ ∞

0
exp(ix cosθ) sin2ν θ dθ (Reν > 1

2) (50)

d

dx
[xνJν(x)] = xνJν−1(x) (51)

one can find that

Fd(k) =
(

2πσ

k

)d/2

[gd/2f Jd/2(a1σk) − (1 + f )Jd/2(σk)]. (52)

Following the technique used by Katsura [18] to evaluate the fourth virial coefficient for
square-well.

We let

ρi = ri − r1 i = 2, 3, 4

f (|ρ|) = h(|ρ|) = h(ρ)

Y21(r) = 1
2

∫ ∫
h(ρ2)h(ρ3)h(ρ4 − ρ2)h(ρ4 − ρ3) dρ3 dρ4.

(53)

Let the Fourier transform ofh(ρ) be Fd(k), which is defined in equation (52)

Y21(r) = 1
2(2π)−d

∫ ∫
[Fd(k)]4 dk. (54)

Using (29), we get

Y21(r) = 1
2(2π)−dCd

∫ ∞

0
[Fd(k)]4kd−1 dk. (55)

Inserting (48) witha1 = 2 for Fd(k),

Y21(r) = (2π)dσ 2dCd

2

∫ ∞

0
[2d/2f Jd/2(2σk) − (1 + f )Jd/2(σk)]4k−(d+1) dk. (56)

To evaluate the first and the last integrals in (56) using the standard identity, see appendix A.
Thus, we have

Y21(r)

b3
= d2(d−2)

[
0

(
d

2
+ 1

)]2 {
0

(
d
2

)
0(d)

3π0
(

3d
2

) [
0

(
d+3

2

)]2 [23df 4 + (1 + f )4]

× 3F2

(
1

2
, 1,

1 − d

2
; d + 3

2
,
d + 3

2
; 1

)
−2

3d+2
2 f 3(1 + f )

∫ ∞

0
[Jd/2(2x)]3Jd/2(x)x−(d+1) dx

+32df 2(1 + f )2
∫ ∞

0
[Jd/2(2x)]2[Jd/2(x)]2x−(d+1) dx

−2
d+2

2 f (1 + f )3
∫ ∞

0
[Jd/2(2x)][Jd/2(x)]3x−(d+1) dx

}
(57)
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where

b = σd

2d
Cd. (58)

3.2.2. Calculation ofY22(r)

Y22(r) =
∫ ∫

f (r12)f (r23)f (r34) dr3 dr4

=
∫ ∫

h(ρ2)h(ρ3 − ρ2)h(ρ4 − ρ3) dρ3 dρ4 (59)

Y22(r) = (2π)−d/2

rd/2−1

∫ ∞

0
[Fd(k)]3Jd/2−1(rk)kd/2 dk. (60)

Inserting (52) witha1 = 2 for Fd(k),

Y22(r) = (2π)2σ 3d/2

rd/2−1

{ ∫ ∞

0
23d/2f 3[Jd/2(2σk)]3Jd/2−1(rk)k−d dk

−3(2)df 2(1 + f )

∫ ∞

0
[Jd/2(2σk)]2Jd/2(σk)Jd/2−1(rk)k−d dk

+3(2)d/2f (1 + f )2
∫ ∞

0
Jd/2(2σk)[Jd/2(σk)]2Jd/2−1(rk)k−d dk

−(1 + f )3
∫ ∞

0
[Jd/2(σk)]3Jd/2−1(rk)k−d dk

}
. (61)

3.2.3. Calculation ofY23(r)

Y23(r) =
∫ ∫

f (r12)f (r13)f (r23)f (r34) dr3 dr4

=
∫ ∫

h(ρ2)h(ρ3)h(ρ3 − ρ2)h(ρ4 − ρ3) dρ3 dρ4 (62)

= 2(1−d/2)

0
(

d
2

) {
−

∫ σ

0
rd/2I dr + f

∫ 2σ

σ

rd/2 dr

}
(63)

where

I =
∫ ∞

0
[Fd(k)]3J d

2 −1(rk)k
d
2 dk.

Inserting (52)Fd(k) with a1 = 2,

I = (2πσ)3d/2
∫ ∞

0
[2d/2f Jd/2(2σk) − (1 + f )Jd/2(σk)]3Jd/2−1(rk)k−d dk. (64)

3.2.4. Special cases.

For d = 1. When d = 1, we will evaluate these integrals in (57), (61) and (63) in the
following sub-section. Puttingd = 1 in (57), we get

Y21(r)

b3
= π

8

{
2

3π
[8f 4 + (1 + f )4] − (2)

5
2 f 3(1 + f )

∫ ∞

0
[J1/2(2x)]3[J1/2(x)]x−2 dx

+6f 2(1 + f )2
∫ ∞

0
[J1/2(2x)]2[J1/2(x)]2x−2 dx

−(2)
3
2 f (1 + f )3

∫ ∞

0
[J1/2(2x)][J1/2(x)]3x−2 dx

}
. (65)
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To evaluate the integrals in (65), we use the standard identity for the Bessel function,
see appendix A, equations (A2) and (A3).

Y21(r)

b3
= π

8

{
2

3π
[8f 4 + (1 + f )4] − 8

π2
f 3(1 + f )

∫ ∞

0
[sin(2x)]3[sinx]x−4 dx

+ 12

π2
f 2(1 + f )2

∫ ∞

0
[sin(2x)]2[sinx]2x−4 dx

− 8

π2
f (1 + f )3

∫ ∞

0
[sin(2x)][sin x]3x−4 dx

}
. (66)

Using the standard identity in appendix A, see equations (A4), (A5) and (A6), we have[
Y21(r)

b3

]
d=1

= 1

48
[4 − 7f + 15f 2 − 3f 3 + 3f 4].

Whenσ = 1, then

[Y21(r)]d=1 = 1
48[4 − 7f + 15f 2 − 3f 3 + 3f 4]. (67)

Puttingd = 1 in equation (61),

Y22(r) = (2π)σ 3/2

r−1/2

{ ∫ ∞

0
23/2f 3[J1/2(2σk)]3J−1/2(rk)k−1 dk

−6f 2(1 + f )

∫ ∞

0
[J1/2(2σk)]2J1/2(σk)J−1/2(rk)k−1 dk

+3(2)1/2f (1 + f )2
∫ ∞

0
J1/2(2σk)[J1(σk)]2J−1/2(rk)k−1 dk

−(1 + f )3
∫ ∞

0
[J1/2(σk)]3J−1/2(rk)k−1 dk

}
. (68)

To evaluate the integrals in (68), we use the standard identity for the Bessel functions,
see appendix A, equations (A2) and (A3). Inserting (A2) and (A3) in (68), we get

Y22(r) = 8

π

{
f 3

∫ ∞

0
[sin(2σk)]3 cos(rk)k−3 dk

−3f 2(1 + f )

∫ ∞

0
[sin(2σk)]2 sin(σk) cos(rk)k−3 dk

+3f (1 + f )2
∫ ∞

0
sin(2σk)[sin(σk)]2 cos(rk)k−3 dk

−(1 + f )3
∫ ∞

0
[sin(σk)]3 cos(rk)k−3 dk

}
(69)

Y22(r) = 8

π
[f 3I1 − 3f 2(1 + f )I2 + 3f (1 + f )2I3 − (1 + f )3I4] (70)

where

I1 =
∫ ∞

0
[sin(2σk)]3 cos(rk)k−3 dk (71a)

I4 =
∫ ∞

0
[sin(σk)]3 cos(rk)k−3 dk (71b)

I2 =
∫ ∞

0
[sin(2σk)]2 sin(σk) cos(rk)k−3 dk (71c)
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and

I3 =
∫ ∞

0
[sin(2σk)][sin(σk)]2 cos(rk)k−3 dk. (71d)

The integralsI1 andI4 can be expressed using the standard formula, see appendix B. Thus,
by using (B1), we can obtainI1 andI4 as

I1 =



π

8
(12σ 2 − r2) r < 2σ

πr3

4
r = 2σ

π

6
(6σ − r)2 2σ < r < 6σ

0 6σ < r

(72)

and

I4 =



π

8
(3σ 2 − r2) r < σ

πr3

4
r = σ

π

6
(3σ − r)2 σ < r < 3σ

0 3σ < r.

(73)

The value of the integralsI2 andI3 is obtained as

I2 = 4I4 − 4I22 (74)

where

I22 =
∫ ∞

0
sin5(σk) cos(rk)k−3 dk. (75)

The value of the preceding integral is obtained in appendix B, see equation (B2), and
the result is

I22 =



π

128
(20σ 2 − 12r2) r < σ

π

64
(15σ 2 − 10rσ − r2) r = σ

π

16
(5σ 2 − 5rσ + r2) σ < r < 3σ

− π

128
(5σ 2 + 10rσ − 3r2) r = 3σ

− π

64
(25σ 2 − 10rσ + 16r2) 3σ < r < 5σ

0 r > 5σ

(76)

and

I3 =
∫ ∞

0
sin(2σk) sin2(σk) cos(rk)k−3 dk

= 2I4 − 4I32 (77)

where

I32 =
∫ ∞

0
sin3(σk) sin2

(
σk

2

)
cos(rk)k−3 dk. (78)



456 N A R Hussien and A A A H Yahya

The value of the preceding integral is obtained in appendix B, see equation (B3), and
the result is

I32 =



π

64
(4σ 2 − 6r2) r < σ

π

64
(7σ 2 − 6rσ ) r = σ

π

64
(10σ 2 − 12rσ + 3r2) σ < r < 2σ

π

64
(6σ 2 − 8rσ + 2r2) r = 2σ

π

64
(2σ 2 − 4rσ + r2) 2σ < r < 3σ

− π

64
(7σ 2 − 2rσ ) r = 3σ

− π

64
(16σ 2 − 8rσ − r2) 3σ < r < 4σ

0 r > 4σ .

(79)

Substituting from (72), (73), (76) and (79) into (70), we get

Y22(r) = b1(r) + b2(r)f + b3(r)f
2 + b4(r)f

3 (80)

where

b1(r) = − 8

π
I4 = −4



1
4(3σ 2 − r2) r < σ

1
2r3 r = σ

1
3(3σ − r)2 σ < r < 3σ

0 3σ < r.

(81)

b2(r) = 8

π
[3I3 − 3I4] = 12



1
4(σ 2 + 2r2) r < σ

1
8(4r3 − 7σ 2 + 6rσ ) r = σ

1
24(42σ 2 − 12rσ + 5r2) σ < r < 2σ

1
12(27σ 2 − 12rσ − r2) r = 2σ

1
24(66σ 2 − 36rσ + 5r2) 2σ < r < 3σ

1
8(7σ 2 − 2rσ ) r = 3σ

1
8(16σ 2 − 8rσ − r2) 3σ < r < 4σ

0 r > 4σ

(82)

b3(r) = 8

π
[−3I2 + 6I3 − 3I4] = 12



1
2[2r2 − σ 2] r < σ

1
8[σ 2 + 2rσ − r2 − 4r3] r = σ

− 1
12(36σ 2 − 30rσ + 7r2) σ < r < 2σ

− 1
6[12σ 2 − 9rσ + 2r2] r = 2σ

− 1
12[12σ 2 + 6rσ + r2] 2σ < r < 3σ

1
16[23σ 2 − 18rσ + 3r2] r = 3σ

1
8[7σ 2 − 6rσ − 18r2] 3σ < r < 4σ

− 1
8[25σ 2 − 10rσ + 16r2] 4σ < r < 5σ

0 r > 5σ

(83)
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and

b4(r) = 8

π
[I1−3I2+3I3−I4] = 4



21

8
r2 r < σ

1
8[48σ 2 − 12rσ − 5r2 − 28r3] r = σ

− 53
4 σ 2 + 11rσ − 53

24
r2 σ < r < 2σ

− 1
2[ 63

2 σ 2 − 19rσ + 19
6 r2 − r3] r = 2σ

− 1
24[54σ 2 − 96rσ + 91r2] 2σ < r < 3σ

1
16[219σ 2 − 106rσ + 15r2] r = 3σ

1
4[ 69

2 σ 2 − 13rσ − 77
3 r2] 3σ < r < 4σ

21
8 σ 2 − 1

4rσ − 17
3 r2 4σ < r < 5σ

1
3(6σ − r)2 5σ < r < 6σ

0 r > 6σ .

(84)

Then we get

Y22(σ ) = b1(σ ) + b2(σ )f + b3(σ )f 2 + b4(σ )f 3

= − 2σ 3 + 3
2σ 2(4σ − 1)f + 3σ 2(1 − 2σ)f 2 + 1

2σ 2(31− σ)f 3.

Whenσ = 1 then

Y22(1) = 1
2[−4 + 9f − 6f 2 + 3f 3] (85)

and so

Y22(2) = − 1
3[4 + 3f + 12f 2 − 11f 3]. (86)

Puttingd = 1 in (64) and (63), we get

Y23(r) = 4πσ 3/2

{
−

∫ σ

0
r1/2I dr + f

∫ 2σ

σ

r1/2I dr

}
(87)

where

I =
∫ ∞

0
[21/2f J1/2(2σk) − (1 + f )J1/2(σk)]3J−1/2(rk)k−1 dk.

Substituting from (60) we get

Y23(r) = 2

{
−

∫ σ

0
Y22(r) dr + f

∫ 2σ

σ

Y22(r) dr

}
. (88)

InsertingY22(r) we can write

Y23(r) = E1(r) + E2(r)f + E3(r)f
2 + E4(r)f

3 + E5(r)f
4. (89)

As before, we get

E1 = 16
3 σ 3 E2 = −14σ 3 E3 = 119

3 σ 3

E4 = − 1
3σ 3 and E5 = −7σ 3.

(90)

Substituting from (90) in (89), we get

Y23(σ ) = σ 3

3
[16 − 52f + 119f 2 − f 3 − 21f 4] (91)

and

Y23(2σ) = (2σ)3

3
[16 − 52f + 119f 2 − f 3 − 21f 4]. (92)
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3.2.5. Calculation ofBq

4 (T ) in one-dimension. Putting(d = 1 andσ = 1) in equation (41),
we get

B
q

4 |d=1 = Bc
4|d=1 + 6

23/2
[eβεY 1

2 (1) + θ(βε)Y 1
2 (2)](λ) + 0(λ2) (93)

whereY 1
2 (r) is the radial distribution function in one dimension and

Y 1
2 = Y 1

21 + Y 1
22 + Y 1

23. (94)

From equations (67), (85), (86), (91) and (92), we get

Y2(1)

b3
|d=1 = 1

48
[164− 623f + 1775f 2 + 53f 3 − 333f 4] (95)

and

Y2(2)

b3
|d=1 = 1

48
[1988− 6711f + 15 055f 2 + 45f 3 − 2685f 4]. (96)

Substituting in (93)

B
∗q

4 = B∗c
4 + 3√

2

{
1

48
eβε [164− 623f + 1775f 2 + 53f 3 − 333f 4]

+ 1
48θ(βε)[1988− 6711f + 15 055f 2 + 45f 3 − 2685f 4]

}
(97)

whereB∗c
4 from [12] can be written in the following as

B∗c
4 |d=1 = Bc

4

b3
|d=1 = 1.018 32− 3.927 82f + 2.727 89f 2 − 52.490 22f 3 − 22.029 34f 4

+81.008 34f 5 + 51.538 97f 6. (98)

For d = 3. When d = 3, we will evaluate these integrals in (57), (61) and (63) in the
following sub-section.

Puttingd = 3 in (57)

Y21(r)

b3
= 27π

16

{
8

315π
[8f 4 + (1 + f )4] 3F2

(
1

2
, 1, −1; 3, 3; 1

)
−(2)13/2f 3(1 + f )

∫ ∞

0
[J3/2(2x)]3[J3/2(x)]x−4 dx

+3(2)4f 2(1 + f )2
∫ ∞

0
[J3/2(2x)]2[J3/2(x)]2x−4 dx

−(2)7/2f (1 + f )3
∫ ∞

0
[J3/2(2x)][J3/2(x)]3x−4 dx

}
. (99)

Katsura [18] has evaluated the integrals in (99), see appendix A (equations (A7), (A8), (A9)
and (A10)); we get

Y21(r)

b3
= 3

2240
[544− 4075f + 35 007f 2 − 9968f 3 + 139 215f 4].

Whenσ = 1, then we get

Y21(r) = π3

2520
[544− 4075f + 35 007f 2 − 9968f 3 + 139 215f 4]. (100)
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Puttingd = 3 in (61), we get

Y22(r) = (2π)3σ 9/2

r1/2
{29/2f 3W 3

3
2 , 3

2 , 3
2 , 1

2
(2σ, 2σ, 2σ, r) − 24f 2(1 + f )W 3

3
2 , 3

2 , 3
2 , 1

2
(2σ, 2σ, σ, r)

+3(2)3/2f (f + 1)2W 3
3
2 , 3

2 , 3
2 , 1

2
(2σ, σ, σ, r) − (1 + f )3W 3

3
2 , 3

2 , 3
2 , 1

2
(σ, σ, σ, r)}

(101)

where

Wλ
α,β,γ,...(a, b, c, . . .) =

∫
X−λJα(ax)Jβ(bx) · · · dx.

The integrals in (101) have been obtained by McQuarrie [22] whenσ = 1, see appendix B
(equations (B4), (B5), (B6) and (B7)); we get whenσ = 1

Y22(r) = (2π)3

r1/2
{29/2f 3W 3

3
2 , 3

2 , 3
2 , 1

2
(2, 2, 2, r) − 24f 2(1 + f )W 3

3
2 , 3

2 , 3
2 , 1

2
(2, 2, 1, r)

+3(2)3/2f (f + 1)2W 3
3
2 , 3

2 , 3
2 , 1

2
(2, 1, 1, r) − (1 + f )3W 3

3
2 , 3

2 , 3
2 , 1

2
(1, 1, 1, r)}.

(102)

Substituting from (B4), (B5), (B6) and (B7) into (102), we get

Y22(1)

b3
= 3

2π

[
−136

315
+ 467

140
f − 683

42
f 2 + 2159

84
f 3

]
. (103a)

Whenσ = 1 then we get

Y22(1) = π2

[
−136

315
+ 467

140
f − 683

42
f 2 + 2159

84
f 3

]
(103b)

and so
Y22(2)

b3
= 3

2π

[
− 91

2250
+ 13

7
f − 1829

210
f 2 + 715

42
f 3

]
. (104a)

Whenσ = 1 then we get

Y22(2) = π2

[
− 91

2250
+ 13

7
f − 1829

210
f 2 + 715

42
f 3

]
. (104b)

Puttingd = 3 in (63) and (64), we get

Y23(r) =
√

2

π

{[
−

∫ σ

0
r3/2I + f

∫ 2σ

σ

r3/2I

]
dr

}
(105)

where

I = (2πσ)9/2
∫ ∞

0
[23/2f J3/2(2σk) − (1 + f )J3/2(σk)]3J1/2(rk)k−3 dk. (106)

The integrals in (106) have been obtained whenσ = 1. Then we can writeY23(r) as
follows:

Y23(r) = 4π

∫ 1

0
r2Y22(r) dr + f

∫ 2

1
r2Y22(r) dr. (107)

Substituting from (104) and integrating, we get

Y23(r)

b3
= 12

[
272

2835
− 8095

12 090
f + 663 581

273 880
f 2 − 4 703 417

11 503 296
f 3 − 409 243

36 288
f 4

]
. (108a)

Whenσ = 1 then we get

Y23(r) = (2π)3

[
272

2835
− 8095

12 090
f + 663 581

273 880
f 2 − 4 703 417

11 503 296
f 3 − 409 243

36 288
f 4

]
. (108b)
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3.2.6. Calculation ofBq

4 (T ) in three dimensions. Puttingd = 3 andσ = 1 in equation (41),
we get

B
q

4 = Bc
4 + 3C3

25/2
[eβεY 3

2 (1) + 4θ(βε)Y 3
2 (2)](λ) + 0(λ2).

Substituting from (31)

C3 = 2π3/2

0
(

3
2

) = 4π

then

B
q

4 = Bc
4 + 3π√

2
[eβεY 3

2 (1) + 4θ(βε)Y 3
2 (2)](λ) + 0(λ2) (109)

whereY 3
2 (r) is the radial distribution function in three dimensions and

Y2 = Y21 + Y22 + Y23. (110)

From equations (100), (104) and (108), we get

Y2(1)

b2
= 1.673 834− 11.900 28f + 68.197 69f 2 + 3.236 28f 3 + 51.116 99f 4 (111a)

and

Y2(2)

b3
= 1.860 591− 12.605 94f + 71.802 23f 2 − 10.605f 3 + 51.116 99f 4. (111b)

Inserting (111) in (109)

B
∗q

4 = B∗c
4 + 3π√

2
{eβε [1.673 834− 11.900 28f + 68.197 69f 2

+3.236 28f 3 + 51.116 99f 4]

+4θ(βε)[1.860 591− 12.605 94f + 71.802 23f 2

−10.605f 3 + 51.116 99f 4]} (112)

where

B∗c
4 = 0.286 95+ 1.6342f − 23.294f 2 + 54.648f 3 + 70.754f 4 − 168.20f 5 − 12.747f 6.

(113)

4. Discussion

The values obtained for the first quantum correction to the fourth virial coefficientB
∗q

4 (T )

in d = 1, with a1 = 2, are shown in figure 1. We see that the first quantum effects to
B4(T ) appear up toT

TB
= 0.5 for all values ofλ, where T

TB
= KT

ε
ln 2 andTB is the Boyle

temperature. Up to this range the first quantum effect decreases with a decrease ofλ.
The classicalB4(T ) for the square-well potential (SW) is also shown in the figures for

comparison.
The values obtained for the first quantum correction toB

∗q

4 in d = 3, with a1 = 2, are
reported in figure 2. We see that the first quantum effects toB4(T ) appear up toT

TB
= 0.75

for all values ofλ, where T
TB

= KT
ε

ln 8
7. Up this range the first quantum effect decreases

with a decrease ofλ.
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Figure 1. The reduced fourth virial coefficientB∗q

4 = B
q
4

b3 in one dimension as a function of the

temperature
(

T
TB

)
.

Figure 2. The reduced fourth virial coefficientB∗q

4 = B
q
4

b3 in three dimensions as a function of

the temperature
(

T
TB

)
.
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Appendix A

From Loban and Baram [10],∫ ∞

0
[Jν(x)]4x−(2ν+1) dx =

∫ ∞

0
[Jν(2x)]4(2x)−(2ν+1) d(2x)

= 20(ν)0(2ν)

3π0(3ν)
[
0

(
ν + 3

2

)]2 3F2

(
1

2
, 1,

1

2
− ν; ν + 3

2
, ν + 3

2
; 1

)
(A1)

see [19] vol II, p 79, equation (14)

J1/2(x) =
√

2

πx
sinx (A2)

J−1/2(x) =
√

2

πx
cosx. (A3)

To evaluate the integrals in (61) using the following standard identities, see [20] (p 451,
equations (10), (12))

∫ ∞

0
[sinax]3[sin 3bx]x−4 dx =


9bπ

8
(a2 − b2) 3b 6 a

π

16
[8a3 − 9(a − b)3] a 6 3b 6 3a.

(A4)

∫ ∞

0
[sinax]2[sinbx]2x−4 dx = πb2

6
(3a − b) 0 6 b 6 a (A5)

so that ∫ ∞

0
[sin 2x]3[sinx]x−4 dx = 35

24π∫ ∞

0
[sin 2x]2[sinx]2x−4 dx = 5

6π∫ ∞

0
[sin 2x]2[sinx]3x−4 dx = 23

48π. (A6)

Katsura [18] has evaluated the integrals in (94) as follows:∫ ∞

0
[J3/2(2x)]3[J3/2(x)]x−4 dx =

√
2

π

92 051

2835
(2)−9 (A7)∫ ∞

0
[J3/2(2x)]2[J3/2(x)]2x−4 dx = 1

2π

263

2835
(A8)∫ ∞

0
[J3/2(2x)][J3/2(x)]3x−4 dx = 1√

2π

6251

2835
(2)−6 (A9)

also,

3F2 = 17
8 . (A10)
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Appendix B

To evaluate the integrals in (66a) and (66b) using the following standard identity, see [20]

∫ ∞

0

sin3 ax cosbx

x3
dx =



π

8
(3a2 − b2) b < a

πb3

4
a = b

π

6
(3a − b)2 a < b < 3a

0 3a < b.

(B1)

To calculate the integrals in (70) and (73) using the software Mathematica [21] we get

∫ ∞

0

sin5(ax) cos(rx)

x3
dx = −5a2π sign[a − r]

64
+ 5arπ sign[a − r]

32
− 5r2π sign[a − r]

64

+45a2π sign[3a − r]

128
− 15arπ sign[3a − r]

64
+ 5r2π sign[3a − r]

128

−25a2π sign[5a − r]

128
+ 5arπ sign[5a − r]

64
− r2π sign[5a − r]

128

−5a2π sign[a + r]

64
− 5arπ sign[a + r]

32
− 5r2π sign[a + r]

64

+45a2π sign[3a + r]

128
+ 15arπ sign[3a + r]

64
+ 5r2π sign[3a + r]

128

−25a2π sign[5a + r]

128
− 5arπ sign[5a + r]

64
− r2π sign[5a + r]

128
(B2)∫ ∞

0

sin3(ax) sin2
(

ax
2

)
cos(rx)

x3
dx = −3a2π sign[a − r]

64
+ 3arπ sign[a − r]

32

−3r2π sign[a − r]

64
+ a2π sign[2a − r]

16
− arπ sign[2a − r]

16

+ r2π sign[2a − r]

64
+ 9a2π sign[3a − r]

64
− 3arπ sign[3a − r]

32

+ r2π sign[3a − r]

64
− a2π sign[4a − r]

8
+ arπ sign[4a − r]

16

− r2π sign[4a − r]

128
− 3a2π sign[a + r]

64
− 3arπ sign[a + r]

32

−3r2π sign[a + r]

64
+ a2π sign[2a + r]

16
+ arπ sign[2a + r]

16

+ r2π sign[2a + r]

64
+ 9a2π sign[3a + r]

64
+ 3arπ sign[3a + r]

32

+ r2π sign[3a + r]

64
− a2π sign[4a + r]

8
− arπ sign[4a + r]

16

− r2π sign[4a + r]

128
(B3)
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where

signx =


−1 x < 0

0 x = 0

1 x > 0.

McQuarrie [22] has evaluated the integrals in (97) as follows:

W 3
3
2 , 3

2 , 3
2 , 1

2
(1, 1, 1, r) =



1

4πr1/2

(
− r7

1260
+ r5

20
− r3

4
+ 5

12
r

)
0 6 r 6 1

1

4πr3/2

(
r7

2520
− r5

40
+ r4

12
+ r3

8

− 9

10
r2 + 9

8
r − 27

140

)
1 6 r 6 3

0 r > 3

(B4)

W 3
3
2 , 3

2 , 3
2 , 1

2
(1, 1, 2, r) =



1

4π(2r)1/2

(
− r7

5040
+ r5

40
− r4

12
+ 4

9
r

)
0 6 r 6 2

1

4πr1/2

(
r7

5040
− r5

40
+ 5r4

36

−8

5
r2 + 32

9
r − 64

35

)
2 6 r 6 4

0 r > 4

(B5)

W 3
3
2 , 3

2 , 3
2 , 1

2
(1, 2, 2, r) =



1

8πr1/2

(
− r7

5040
+ 3r5

80
− 5r3

16
+ 185

144
r

)
0 6 r 6 1

1

8πr1/2

(
r4

72
− 13r2

20
+ 16

9
− 37

240

)
1 6 r 6 3

1

8πr1/2

(
r7

10 080
− 3r5

160
− 17r4

144
+ 5r3

32

−25r2

8
+ 2375

288
r − 625

142

)
3 6 r 6 5

0 r > 5

(B6)

W 3
3
2 , 3

2 , 3
2 , 1

2
(2, 2, 2, r) =



1

8π(2r)1/2

(
− r7

10 080
+ r5

40
− r3

2
+ 10

3
r

)
0 6 r 6 2

1

8π(2r)1/2

(
r7

20 160
− r5

80
+ r4

12

+ r3

4
− 18r2

5
+ 9r − 108

35

)
2 6 r 6 6

0 r > 6.

(B7)

References

[1] Wigner E 1932Phys. Rev.40 749
[2] Kirkwood J G 1933Phys. Rev.44 33
[3] Hemmer P C 1968Phys. Lett.27A 377
[4] Jancovici B 1969Phys. Rev.178 295



The fourth virial coefficient for fluids ind-dimensionality 465

[5] Gibson W G 1972Phys. Rev.A 5 862
[6] Derderian E G and Steele W A 1971Phys. Rev.55 9795
[7] Singh B P and Sinha S K 1978J. Chem. Phys.68 562
[8] Singh N and Sinha S K 1979J. Chem. Phys.70 522
[9] Nilsen T S 1969Phys. Rev.186 262

[10] Luban M and Baram A 1982J. Chem. Phys.76 3233
[11] Ree F H and Hoover W G 1964J. Chem. Phys.40 2048
[12] Hussien N A R andAhmed S M 1991J. Phys. A: Math. Gen.24 289–305
[13] Sinha J B and Sinha S K 1990Mol. Phys.716 135
[14] Arruada J J D andHill R N 1970 Phys. Rev.A 1 1791
[15] Larsen S Y, Kilpatrick J E, Lieb E H and Jordan H FPhys. Rev.A 140 129
[16] Hil l T L 1956 Statistical Mechanics(New York: McGraw-Hill)
[17] Hussien N A R and Yahya A A Bull. Fac. Sci., Assiut Univ.(to be published)
[18] Katsura S 1960Phys. Rev.115 1417
[19] Prudnikov A P, Brychkov Yu A and Marichev O IIntegrals and Seriesvol 2 (New York: Gordon and

Breach)
[20] Gradshteyn I S and Ryzhik I M 1980 Tables of Integrals, Series, and Products(London: Academic)
[21] Wolfram S 1991Mathematica, A System for Doing Mathematics by Computerver 3 (New York: Addison-

Wesley)
[22] McQuarrie D A 1964Chem. Phys.40 3455


