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Abstract. The aim of the present work is to derive the first quantum correction to the fourth
virial coefficient for fluids of molecules interacting according to the square-well potential of
arbitrary dimensionalityd. In this paper, we show that the basic method of Hemmer and
Jancovici, which was followed by Gibson, can be extended to cover more general intermolecular
potentials. The extension of the formalism is straightforward, but some consideration has to be
given to the problem of how to truncate the resulting expansion to get all the quantum corrections
to a given order in.. The first quantum correction to the fourth virial coefficient is obtained in
arbitrary dimensionalityd = 1, 3).

1. Introduction

The quantum corrections to the equation of state are usually calculated by using the Wigner—
Kirkwood (WK) method [1, 2] when the potential is analytic and by the Hemmer—Jancovici
(HJ) method [3, 4] when the potential is a hard-sphere one. The WK method fails in the case
of nonanalytic potentials. Gibson [5] has extended the method of Hemmer and Jancovici
to cover more general intermolecular potentials and calculated the first quantum correction
to the virial coefficients for the square-well plus hard-core potential.

Another possible method is the ‘modified’” WK expansion developed by Derdeian and
Steele [6] and further extended by Singh and Sinha [7], in which the hard-sphere potential
is used as a reference potential and the hard-sphere wavefunctions as a basis set. Singh and
Sinha [7] used this method to calculate the quantum corrections to the third virial coefficient
for hard-core fluids. Singh and Sinha [8] have used the modified WK series to calculate
the quantum corrections to the third virial coefficient for a fluid with a square-well plus
hard-core potential. Nilsen [9] calculated the first quantum correction to the classical value
of the second virial coefficient for the square-well potential.

In arbitrary dimensionalityd, Luban and Baram [10] derived exact expressions for
the third virial coefficient and two of the three terms contributing to the fourth virial
coefficient. Ree and Hoover [11] calculated the fourth virial coefficient for a hard sphere
(1 € d £ 9). Hussien and Ahmed [12] used the method of Luban and Baram [10] to
derive exact expressions for the second and third virial coefficients, and they calculated a
general expression for the terms of the fourth virial coefficient for fluids to the square-well
potential of arbitrary well width and arbitrary dimensionality Recently, Sinha and Sinha
[13] calculated the quantum corrections to the properties of a démmensional fluid of
hard d-spheres.
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In this paper, we generalize the method given by Gibson [5] using the basic method of
Hemmer and Jancovici [3, 4] to calculate the first quantum correction to the fourth virial
coefficient for the square-well potential of arbitrary dimensionality. In section 2, we review
the work of Gibson [5]. In section 3, we present a calculation for the square-well plus
hard-core potential ir/-dimensionality. The paper ends with numerical results in some
special cases and the figures.

2. Expansion of the partition function

Gibson [5] showed that the basic method of Hemmer and Jancovici [3, 4] can be extended
to cover more general intermolecular potentials. The extension of the formalism is
straightforward, but some consideration has to be given to the problem of how to truncate
the resulting expansion to get all the quantum corrections to a given orderlinshould
be noted that in his work he considered only the direct part of the virial coefficients—the
effects of quantum statistics are completely neglected. If the potential is strongly repulsive
at small distances (as is the case for all realistic potentials), it is expected that statistical
effects will be negligible at temperatures where a series in powers isfuseful. This
has only been proved for the second virial coefficient [14], but it seems clear that higher
coefficients will exhibit a similar behaviour, since the physical mechanism responsible for
the rapid suppression of statistical effects with increasing temperature is present in all cases
[15].

Gibson [5] considered a system &f identical particles each of massin a container
of volume Q. Let the Hamiltonian be

Hy =Ny + Vy (1)
where HY is the kinetic energy of th&/ particles, andVy is the total potential energy. Let

WL, 2,....,N) =2 (re, ...,enl€ P ry, o ry) 2)
wherepg = 1/KT and = (2rh?p/m)*?. The classical limit ofWy is

WS(1,2,...,N) =g Fwir.m, (3)
A ‘modified” W function W}y (1, 2, ..., N) is defined by the relation

Wy = WSWo. (4)

(If the pair potential has a hard core, bathy, and W, will vanish for particle configurations
in which hard cores overlap. In this cas&y can be taken as zero also.) We note that
since bothWy and W, possess the ‘product property¥s will possess it too. This means
that when the particles split into two groups whose surfaces are separated by a distance
that is large compared with the potential range and the thermal wavelgngilj can be
expressed as a product of two terms, one referring to each group.

In the usual treatment of a quantum gy is expressed in terms of Ursell functions
U; [14]. In an analogous way, we expreBg; in terms of ‘modified’ Ursell functiong/;":

W) =01 =1 (5)
Wy(1,2) =1+ Uy(1,2) (6)
W3'(1,2,3) =1+ Uy'(2,3) + Uy (3, D) + Uz’ (1,2) + Ug'(1,2,3) )

WHQ.. Ny =143 URGD+) US4+ ) URGL kD)
+ UG DURED 4 o
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Equation (8) is obtained by taking a partition of tie particles in groups, making the
corresponding product df//* functions, and summing over all possible partitions. These
equations can be solved successively igt, UY', . . ..

Up(1,2) = W5'(1,2) - 1 9

U3 (1,2,3) =w5(1,2,3) — W3'(2,3 — W' (3, D) — W5 (L, 2)+2  (10)
etc. Since théV," possess the ‘product property’, it follows tHAt" will possess the ‘cluster
property’. This means thdt;" approaches zero for a configuration in which thgarticles

are separated into two or more groups sufficiently distant from each other.
We define

Q:/WN(l,...,N)d3Nr (11)
0°¢ =/W§(1,...,N)d3Nr (12)
a@, ..., D)= (/09 / Wi, ..., NP, ... dry. (13)

Note thatg, is a classical correlation function. Inserting the expansion (8) into (4), and
integrating over the coordinates, gives

0= QC{1+ Q*Zngz(i,j)U;(i,j)dﬁr +Q*3Z/g3(l’, J UL, j, k) &

+Q_4Z/g4(i, Jok,DIUZ G, j kD) + US G, U (k, D] d*r +}
(14)

We wish to use (14) to calculate quantum corrections@oat moderately high
temperatures, wherke is small. In general, these corrections will take the form of a series
in powers ofi. The expansion (14) will be useful only if it can be truncated in some well
defined way, to give the total correction to a specified order.iiThe A contribution from
a factorU;" depends on the potential, and we now consider various cases.

The simplest case is that of hard spheres, for wii¢his identical to the usual Ursell
function U;. The contribution fronlU; to a term in (14) is determined by two factors. First,
the correlation functions vanish for a particle configuration in which hard cores overlap,
and secondlJ; vanishes whenever the particles separate into two groups with a distance
> A between surfaces. This means that the entire contribution comes from configurations
in which the distance between centres of neighbouring spheresanberea < r < a + A
(a is the sphere diameter). It follows that the contribution frofmto an integral in (14) is
of orderA/~1.

Turning now to more general potentials, we note first that, by their construction, the
U™ vanish except for configurations in which the particle separations are such that quantum
effects are present. For example, for a pure square-well potential £ —¢, r < b,

v(r) =0, r > b], quantum effects are negligible unless neighbouring particles are separated
by a distance, where|r — b| < 1. In this case, the contribution fro@” is of ordera/—1.

This result can be extended to a potential which is a finite chain of rectangular wells, with
or without a hard core; again the contribution frdit will be of order/~?.

The situation becomes less clear when we go beyond these simple potentials. Consider a
potential which is analytic and sufficiently repulsive at the origin, so that the WK expansion
exists. The quantum corrections @ will then be given as a series in powers &t It
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is necessary to include contributions from bdtlf and U3’ in order to get the first-order
correction term.

Finally, consider a potential which is analytic except at a finite number of points. One
might argue that the dominant quantum effects occur in the neighbourhoods of these points,
and thatU;" will contribute to orden/~%, as in the rectangular well case, but this conclusion
is only tentative. However, it seems fairly certain that the first-order correction (of order
A) will come entirely fromUy' and since this is about all one would be able to calculate in
practice, the method is applicable.

Let us now assume that the potential is such that the first-order correction is contained
entirely in theU}' term. Then (14) gives

0= QL+ N(N — 1A/ Q + 0(1?)] (15)

where

A 22(1, 22U (1, 2) d°. (16)

T 20

For a spherically symmetric pair potential, this can be written

Ar = 271/ grUy (r)r2 dr a7)
0
whereg(r) is the (classical) radial distribution function. The pressure is given by
2
a
P=pP =" " (pAr+00. (18)
B dp
Expanding the pressure in a virial series,
BP=p+) By (19)

n>2

Uy'(r) can be found from the solution of the quantum-mechanical two-body problem.
From (9), it can be written in the form

Uy (r) = 22%¢3G (r, vy B) — 1 (20)
wherev(r) is the two-body potential and
G(r,r; B) = (rle """ |r) (21)

whereHz“"’ is the Hamiltonian for the relative motion of the two particle system.

3. Square-well potential with hard core

The potential is

00 r<o
v(r) =14 —¢ o <r<ao (22)
0 r > a0

whereo is the diameter of the hard spheusg, is the range of the attractive well and is
usually taken to be 1 and 2, ards the well depth.
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The functionA3G(r, r; B), to first order inx, was calculated [5]. Then, we find

1 1 T-y 1
m _ —Ber—1
o <r<ao (23)
m B 1 T—y 1
UJ =—\/EALal[MF+y8(r—a10+)+0<y3)] r>ao
whereL;?! is the inverse Laplace transform operator defined as
1 c+ioo
L= _". dp e
271 Je—ioo

o = A?/27, y = pY? andT'? = y2 — me/ h?. Substituting in (17), doing the integration
and then the inverse transform, gives

Ay = —2Y27[ef46%Y (0) + O(Be)(a10)?Y (a10)] A + 0(A?) (24)
where
O) =1+e" —267%Iy(3x). (25)

I is the modified Bessel function of the first kind and order zero. We have also introduced
Y (r), which is related to the radial distribution functigtir) by

Y(r) = g(r)ef'®. (26)

In the case where the hard core is present, one can obtain explicit expressions for the
first few virial coefficients by making use of the density expansion of the radial distribution
[16]. We write

Y(r) = Yo(r) + pY1(r) + p?Ya(r) + - - (27)
which leads to
B, = B 4 (n — )220 %[/Y, 2(0) + O(Be)aiY, a(a10)]i + 0(1?). (28)

3.1. The first quantum correction to the fourth virial coefficient

We evaluate the first quantum correction to the fourth virial coefficient in arbitrary
dimensionality. From Luban and Baram [10], if the integrand ef-dimensional integral
possesses spherical symmetry, then

/ H(r)dr = Cd/ H(r)ri tdr (29)
0
whereas ifH is a function ofr and a single polar angle,
/H(r,@)dr = CH/ rd_ldr/ H(r,0)sin~20dd. (30)
0 0
The quantityC, is the surface area of a unit sphereRf, defined by
2 d/?
= . 31
) (31)

By using (29), equation (16) can be written as

Ay = % f g Uy (ryr*tdr. (32)
0
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Then equation (24) becomes

Ca

A2 =S

[ 0" 1Y (0) + O(Be)(a10) Y (@10)]h + 00.7)
whereY“ means that’ is 4-dimensional. By using (28) and (33), we get
. Cqo
=B, +(n— 1)72(0l+2)/2
In cases of(in = 2, 3) this work is at press [17] and the results are

Cio
BY = BS +

sl + OBea10/o) + 00 /0)?

By = B3 + 27’;1;’)“{936[(” P2 1 2dr2-1(0,0.0)
—2a{2f(f + 1) ijéd/z,d/z,l(a, ai0, o)
ffzwj//Zz,d/Z,d/Zfl(alav a10,0)]
+af/20(.36)[(1 + f)sz//zzd/2 d/z_l(a, 0, a10)
=282 f(f + DW /3 41247210, a10, a10)
+ad FPW413 410,470 1(@10, a10, a10)]} (/o) + 001 /0)?
where

1
T(1+4d/2)

r

oT(1/2)T(d + 1)/2)

2—d/2rd/2—l[

d/2 _
Waiz.a/2.4/2- 1(0,0,r) =

1

F(1+d/2)
r

a0 (/2T + 1)/2)

2—d/2rd/2—1|:

d/2 _
Wd/Z,d/Z,d/Z—l(ala’ aio,r) =

2 122 44252

0 r > 2a10
and
9—d/2,.d/2-1
d/2— 0<r<o(a;1 -1
ra+d/2

/2

w _q1(0,a10,r) =
d2.d/2,d/2-1 o <r <ot
Z

0 r>o(a+1

€Y7 ,(0) + O(Be)ad Y ,(a10)] (1 /o) + O(A?).

(1—d 13 2 >i|
X2Fl T A ' A'A’ a0 o O<r<

(33)

(34)

(35)

(36)

(37)

(38)

(39)
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where
- (Zn)(lr/fzf():l/:;/“ A—F P )
%ﬂ -3 P ()
+ %(1—@353 ()C3)} (40)
d

2a1ro 2a10

2ro

3.2. Calculation ofB] (T)
Whenn = 4 in equation (34), we get

3Cd0d

q __ pc
By = Bs+ 20d+2)/2

[#Ys(0) + O(Be)g? 1Y (a10)](h /o) +0(0%)  (41)

Wherede means that’, is d-dimensional, but, is

Yo(r) = Yo1(r) + Yao(r) 4 Ya3(r) (42)
where
You(r) = %/ f(r12) f(r13) f (r2a) f (r34) dr3 drq (43)
Yoo(r) = // f(r12) f(r23) f (r3a) dradry (44)
and
Ya3(r) = Zf f(r12) f(r13) f (r23) f (r34) dr3drg (45)
where f (r) is the Mayer function which is defined as
fr)= exp[_KU;f)] -1 (46)
By using equation (22) we get
-1 r<o
f(r)=13 f=expBe) —1 o <r<ao (47)
0 r > a.o.

3.2.1. Calculation oft,1(r). By using the techniques of Katsura [18] we can evaluate
Y,1(r) analytically. Thed-dimensional Fourier transformi, (k) of f(r) is defined by

Fyk) = / f(r)yexpikr) dr

F;(k) = f f(r) exp(ikr cosp) dr. (48)
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From (30), (47) and (48) we get

Fy (k) :cdl{ —/ rd_ldr/ exp(ikr cosd) sinf' =26 do
0 0

+f / rildr / exp(ikr cosd) sirnf! =24 de}. (49)
o 0
Using the following standard identities for the Bessel function:
_ % * H vy 1
Jy(x) = A (ot ) /O exp(ix cosd) sirt” 6 do (Rev > 1) (50)
d
a[X“Jv(x)] = x"Jy-1(x) (51)
one can find that
20 \*/? /2
Fy(k) = <k) (872 f Jujo(ar0k) — (L + f)Jaja(ok)]. (52)
Following the technique used by Katsura [18] to evaluate the fourth virial coefficient for
square-well.
We let
pi=ri—r1 i=234
(D) = hlph) = h(p) (53)

V) = [ [ b2 oot os = p2)hps = o) el
Let the Fourier transform of(p) be F,(k), which is defined in equation (52)
ar) = b@n ! [ [1Faort . (54)
Using (29), we get
Yau(r) = 3(20) ¢y / " LFao) e . (55)
Inserting (48) witha; = 2 for Fd(zk),
Yoi(r) = w /0 T[R292 1 141220k — (L4 gl bI % k. (56)

To evaluate the first and the last integrals in (56) using the standard identity, see appendix A.
Thus, we have

You1(r) B d 2 I (4)r@)
b 2 ) s @ e 1 T
(1 1-d d+3 d+3

X3F2 . .

2’1’2’2’2’1>

2% 34 f) / [ 220130 2(6)x @+ de
0

132 214 f)? / [ 22012 2P~
0

27 f(A+ f)° /0 [Ja/2(20)][ Jay2 ()] P~V dx} &)
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where

of

bh=—Cy. 58
chd (58)

3.2.2. Calculation ofY2,(r)
Yoo(r) = // f(r12) f (r23) f (r3s) dr3dry

= // h(p2)h(p3 — p2)h(ps — p3) dpz doa (59)
21 —d/2 00
Yo(r) = (,d% /O [Fa (01> Jaj2-1(rk)k?’? dk. (60)
Inserting (52) witha; = 2 for F,(k),

21 2 .3d/2 00
Yalr) = (rj/f_l{ / 2412 (31,520 k) a o1 POk~ dk
0

_32 2L+ f) / /2202 Ja 20 k) Ja a2k dk
0
132 f A+ f)° f T2 oK) [T (@R da s (rlOk
0
-1+ f)3/0 [a/2(0 k)] Jajo-1(rk)k™ dk}~ (61)

3.2.3. Calculation ofY»3(r)

Yos(r) = / f(r12) f (r13) f (ro3) f (r34) dra dra

= / / h(p2)h(p3)h(p3 — p2)h(pa — p3) dp3dps (62)
2(1-d/2) o 2

= d{ —/ rd/zldr—i-f/ rd/zdr} (63)
r(s) 0 g

where
I= f [Fatk)]Ts_y(rk)k > dk.
0
Inserting (52)F; (k) with a; = 2,

[ = (2n0)%/? / 292 £ J4/2(20k) — (L+ £)Jaj2(0 k)3 Ta/2-1(rk)k ™ dk. (64)
0
3.2.4. Special cases.

Ford = 1. Whend = 1, we will evaluate these integrals in (57), (61) and (63) in the
following sub-section. Putting = 1 in (57), we get

Yor(r) m

2 5 * _
= 8{3;1[8f4+ A+ H1- @220+ 1) /0 [1/2(20)]°[J1/2(6)]x 2 dx

16721+ f)> / [1/2(2012L 2 (0P dr
0

—@% 4+ f)° /0 [J1/2<2x>][J1/2<x>]3x‘2dx}. (65)



454 N A R Hussien athA A A H Yahya

To evaluate the integrals in (65), we use the standard identity for the Bessel function,
see appendix A, equations (A2) and (A3).
Ya(r) w

™[ 2 g o_ 8 s /oo ; (i —4
» 8{371[81” + 1+ )] 2/ A+ 1 ; [sin(2x)]*[sinx]x " dx

+717§f2(1 +)? /oo[sin(Zx)]z[sinx]zx*“dx
0

—% fa+ 3 /0 oo[sin(zx)][sin x]3x_4dx}. (66)

Using the standard identity in appendix A, see equations (A4), (A5) and (A6), we have

Yo1(r) _i _ 2 3 4
[ = L=1_48[4 7f +15f% — 3f3 + 374

Wheno = 1, then

[Yo1(r)]a=1 = 5[4 — 7f + 1577 =33+ 377 (67)
Puttingd = 1 in equation (61),
3/2 o0
Yoo(r) = (271)52{ /0 222 3 J12(20 )13 _1)2(rk)k " dk

~6£2(1+ f) fo L1220 k) P1y2(0k) Tk dk
+3Y2f(1+ £)? / J12(20 k) [ J1(0 k)P T_12(rk)kt dk
0

—14fy /0 [Jl/zwk)]?v1/2<rk>k—1dk}. (68)

To evaluate the integrals in (68), we use the standard identity for the Bessel functions,
see appendix A, equations (A2) and (A3). Inserting (A2) and (A3) in (68), we get

Yoo(r) = :{f‘? / oo[sin(zak)]?’cos(rk)lf3 dk
0
—3f%(1+ f) / oo[sin(ZUk)]zsin(ok) cosrk)k—3dk
0

+3f(1+ f)? f sin(2ok)[sin(ok)]? cogrk)k =3 dk
0

—(1+ 1?3 f oo[sin(ak)]3cos(rk)/f3 dk} (69)
0
8
Yoo(r) = —[f°h = 3f*(L+ NIz +3f 1+ ) ls— 1+ /)°L] (70)
where
L= / oo[sin(zok)]Scos(rk)lf3 dk (71a)
0
Iy = / oo[sin(crk)]3cos(rk)k*3 dk (71b)
0

I, = / [sin(20k)]? sin(o k) cosrk)k 3 dk (71c)
0
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and
I3 = / [sin(20 k)][sin(o k)]? cosrk)k 2 dk. (71d)
0

The integralsl; and I, can be expressed using the standard formula, see appendix B. Thus,
by using (B1), we can obtaify and/, as

%(1202 —r? r <20
3
r
n={ 4 r=2 (72)
%(60—1*)2 20 <r < 6o
0 6o <r
and
%(302 — r2) r<o
a3 _
L=\ 4 Tee (73)
%(30 —r)? o<r<3o
0 3 <r.
The value of the integralg, and /3 is obtained as
I = 41, — 4l (74)
where
o0
Iy = f sirP(ok) cos(rk)k 2 dk. (75)
0

The value of the preceding integral is obtained in appendix B, see equation (B2), and
the result is

%3(2002 — 1272 r<o
%(1502—10m—r2) r=o
T
Z (562 — 5rg + r? o<r<30
Iy = 16" ) (76)
_ T (552 _ 3.2 _
128(50 + 10ro — 3r9) r =30
—é(2502—10r6+16r2) 30 <r <50
0 r > bo
and
o0
Is = / sin(20k) sirf (o k) cosrk)k 2 dk
0
=21, — 4l (77)
where

Isp = / sin(o k) sir? (Uzk) cos(rk)k 3 dk. (78)
0
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The value of the preceding integral is obtained in appendix B, see equation (B3), and
the result is

%(402 By
%(702 — 6ro)

%(1002 — 120 +3r?)

e é (602 — 8ro + 27 r =20 79)
é(202—4r0+r2) 20 <r <30
T
—&1(702—2ro) r=30
—%(1602—8r6—r2) 30 <r <4o
0 r>4o.
Substituting from (72), (73), (76) and (79) into (70), we get
Y22(r) = b1(r) + b2(r) f + b3(r) f2 + ba(r) f° (80)
where
%(302 — rZ) r<o
8 %rs r=o
bl(r)z_;l4=_4 %(30—r)2 o<r<3o (61)
0 o <r.
%(02 +2r?) r<o
%(4r3—702+6r0) r=o
24202 — 12r0 + 5r?) o<r<20
ba(r) = S[3l5 — 314] = 12 %(27‘72 “lZo-rh  r=2 (82)
4 ﬂ(66c72 — 36ro +5r?) 20 <r <30
%(702 — 2ro) r=30
%(1602—8r0—r2) 30 <r <4do
0 r > 4o
%[2}’2 -0 r<o
%[02+2r0—r2—4r3] r=o
—%2(3602 —30rc + 7r?) o<r<2
—1[120% — 9ro + 2r7] r=20
ba(r) = S[—312 +6l3— 314 =127 —1[126% + 6ro + 7] 20 <r <30 (83)

L2302 — 1870 + 3r7]
%[702 — 6ro — 187
—3[250% — 10r0 + 16+7]
0

r =30
30 <r <4o
40 <r < bo

r > 50
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and
21,
Er r <o
1[480% — 12r0 — 5r% — 28] r=o

53
—574302—0—11r0—2—4r2 o<r<20
8 —% 6—302—191’04—1—691’2—r3] r=20

ba(r) = ;[11—312+313—14] =41 —L[540% — 96r0 + 91r?] 20 <r <30
1121%7? - 106-0 + 157 r=30
211[6—29 2—1&0—%7r2] 30 <r <4do
%162—211r0—1§7r2 4o <r < 5o
%(60‘—}’)2 50 <r < 6o
0 r > 60.

Then we get
Y22(0) = b1(0) + b2(0) f + b3(0) % + ba(o) f°
= — 203+ 30%(4o — 1) f +30%(1 - 20) f* + 0%(B1-0) 2.

Wheno = 1 then

Y2o(1) = [—4+9f — 62+ 3f°]
and so

Y22(2) = —1[4 + 3f + 12f% — 11f7].

Puttingd = 1 in (64) and (63), we get

Yo3(r) = 47[03/2{ — /U rY21dr + f/zo r2r dr}
where i ’

I= f Oo[zl/szl/z(zom — (L4 f)J1200 0013 1/2(rk)k ™ dk.
Substituting from (E(S)O) we get

Ya3(r) = 2{ - /OU Yao(r) dr + f/za Y22(r) dr}~
Inserting Y-2(r) we can write ’

Ya3(r) = E1(r) + Ea(r) f + E3(r) % + Ea(r) f3 + Es(r) f*.
As before, we get

E; = 53 E; = —1406°3 E3 = 193
Es= —%0'3 and Es = —70‘3.

Substituting from (90) in (89), we get
3
Yas(o) = %[16 52 + 1192 — £3 — 21f4]

and

(20)°

Y23(20) = 3

[16 — 52f + 119f% — £3 — 21f4.
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3.2.5. Calculation oB (T) in one-dimension. Putting(d = 1 ando = 1) in equation (41),
we get

6

5321 V(D) +0(B)YZ(D)(R) + 0G?) (93)

Bl ly=1 = Bgla=1 +

WhereYzl(r) is the radial distribution function in one dimension and

Yy =Yy+Yh+ Y (©4)
From equations (67), (85), (86), (91) and (92), we get

Yzi(sl) liet = 438 [164— 623f + 1775/2 + 531 — 333f*] (95)
and

%32) luc1 = 438 [1988— 6711f + 150552 + 4513 — 2685 (96)

Substituting in (93)

3 (1
B} = B} + 7 { 4—8eﬂf[164— 623f + 1775f2 + 5313 — 33314

+ 150 (Be)[1988— 6711f + 150552 + 453 — 2685f4]} (97)
where B¢ from [12] can be written in the following as

BC
Bi|ye1 = 173 li—1 = 1.018 32— 3.927 82f + 2.727 89? — 52.490 22f> — 22.029 34f*
481.008 34f° 4 51.538 97¢°. (98)

Ford = 3. Whend = 3, we will evaluate these integrals in (57), (61) and (63) in the
following sub-section.
Puttingd = 3 in (57)

Yzj_(l") _ 277'[{

» 16

8 4 4 1
— 1 =1 -1 01
31571[8f + @+ s 2(2, ,—1,3,3; )

—@"2 31+ f) /0 [J3/2(20)]3[ J3/2(x)]x ~* dx
1324 2L+ f)? /0 [Ja/2(2012[ g 2012 e

—@"2F A+ ) fo [13/2<2x>1[13/2<x>]3x-4dx}. (99)

Katsura [18] has evaluated the integrals in (99), see appendix A (equations (A7), (A8), (A9)
and (A10)); we get

Y2lr) _ 3 1544 40757 + 350072 — 9968/° + 139 2157,
b3 2240

Wheno = 1, then we get

3

Yor(r) = %20 [544 — 4075f + 35007f2 — 9968f3 + 139 2154.  (100)
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Puttingd = 3 in (61), we get

Yoo(r) = @%{29/2]‘ Wg 33, ;(20 20,20, 1) — 24f2(1+ f)W;%%%(ZO', 20,0,r)
3PP f(f+D* W3 551 (20 0.0.1) = (L+ f)°WS 5 5 4 (0.0.0.1)}
(101)
where

Wig,. (ab, c,...)=fx—k1a(ax)1,3(bx).-. dx

The integrals in (101) have been obtained by McQuarrie [22] when1, see appendix B
(equations (B4), (B5), (B6) and (B7)); we get when= 1

(2)®
F12 {

Yoo(r) = FPWE 554222 = 24+ HWS 5 5 1(2.2.1.7)

+3Q¥2f(f+D2W3 55,241, — A+ W35 5.1, 1,1,r).

(102)
Substituting from (B4), (B5), (B6) and (B7) into (102), we get
Yo(1) 3 136 467 683 2159
5 _271[ ast a0’ " a2t f] (103)
Wheno = 1 then we get
136 467 683 2159
Yo2(1) = 72 - 1
2l = 72| =it Tadf = Sy T+ e ] (10)
and so
Y2 3 91 1829 715
_°|_ e 1043,
b3 271[ 2250 " f 210f a2/ ] (104)
Wheno = 1 then we get
91 1829 715
— 2| _ U
@ =7~ oot TS~ i P 1. (104)

Puttingd = 3 in (63) and (64), we get
2 o 20
Yo3(r) = \/>{ [ - / r¥21 + f/ rS/ZI} dr} (105)
T 0 o
where

I = (270)%? /O oo[2"*/2fJ3/2(2ak) — (L + £)Ja/2(0 k)] Jr 2(rk)k =3 dk. (106)

The integrals in (106) have been obtained whegr- 1. Then we can writd3(r) as
follows:

1 2
Yos(r) = 4w / r?Yoo(r) dr + f r2Yoo(r) dr. (107)
0 1

Substituting from (104) and integrating, we get

Y. 272 1 4703417 40924
23(r) _1 3 80950f 663 58Of 03 6f 09 3f4
b3 2835 1209 27388 1150329 36288

Wheno = 1 then we get

272 8095 663581 4703417 409 243

Yo3(r) = (21)2 — 4. (108

22(r) = (27) [2835 12000 T 273 880f 11503 296f 36288 } (10%)

(1089)
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3.2.6. Calculation oBj (T) in three dimensions. Puttingd = 3 ando = 1 in equation (41),
we get

Bj = B; 43 [e’“Y2 (D) +40(B)YZ(2] (1) + 0(A2).

25/2
Substituting from (31)

27 3/2

C3= T%) =4
then

Bj = B; + f/ﬂé [e7€Y3 (1) + 40(Be)Y3(2)](X) + O(1?) (109)
WhereY23(r) is the radial distribution function in three dimensions and

Y, = Yo1+ Yoo + Yoa. (110)
From equations (100), (104) and (108), we get
il) =1.673834— 11900 28f + 68.197 69f + 3.236 28f +51.116 99(* (1118)
and
Y2(2)

= 1.860591— 12605 94f + 71.802 23f? — 10.605f° + 51.116 99*. (111b)
Inserting (111) in (109)

.3
By = B} + 7 {/[1.673834— 11900 28f + 68.197 69>

V2

+3.236 2873 + 51.116 99f*]

+46(Be)[1.860 591 12.605 94f + 71.802 23f2

—10.605f3 4+ 51.116 99} (112)
where
B} = 0.286 95+ 1.6342f — 23.294f2 4 54.648f> + 70.754f* — 16820f° — 12.747f°.

(113)

4. Discussion

The values obtained for the first quantum correction to the fourth virial coefﬁa}ié‘?ﬂ)
ind =1, with a; = 2, are shown in figure 1. We see that the first quantum effects to
B4(T) appear up toL. = 0.5 for all values of, where £ = £LIn2 andT} is the Boyle
temperature. Up to this range the first quantum effect decreases with a decrease of
The classicalB4(T) for the square-well potential (SW) is also shown in the figures for
comparison.
The values obtained for the first quantum correctiomj& ind = 3, witha; = 2, are
reported in figure 2. We see that the first quantum effect®4{@) appear up torlg =0.75

for all values ofx, whereTlB = g In %. Up this range the first quantum effect decreases
with a decrease of.
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Figure 1. The reduced fourth virial coefficierBZ‘f = %} in one dimension as a function of the

T
temperature(r—ﬁ).
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Appendix A
From Loban and Baram [10],
/ [/, (0]~ @+ dx = / [J,(20)]%(20) @+ d(2x)
0 0

_armre)
3rI'Bv) [T (v + g

1 1 3 3
.1 ;- ) =1 Al
)]2“<2 2 VYTV ) (A1)

see [19] vol Il, p 79, equation (14)

/2
J]_/z(.x) = E Sinx (A2)
[ 2
J_12(x) = - CoSx. (A3)

To evaluate the integrals in (61) using the following standard identities, see [20] (p 451,
equations (10), (12))

O

00 T (@? - b?) 3 <a
/ [sinax]3[sin 3bx]x 4 dx = nS (A4)
0 E[8a3 —9(a — b)? a < 3b < 3a.
o0 b2
/ [sinax]?[sinbx]2x 4 dx = %(&; —b) 0<b<a (A5)
0

so that

/Ooo[sin 2)¥sinx]x*dx = 27

/Ooo[sin 2)%[sinx]?x " dx = 37

/Ooo[sin 2c)P[sinx]*x *dy = 7. (AB)
Katsura [18] has evaluated the integrals in (94) as follows:

/292051

> 3 ) -9

/0 @0 a0l = Y22 200 (A7)
= , > 4. 1263

[ vty tae = o 22 (18)
e 1 6251

/0 [J3/2(20)][ J3/2(x)]3x * dx = Eﬁéa_ﬁ (A9)

also,

3F =1 (A10)
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Appendix B

To evaluate the integrals in (6pand (6®) using the following standard identity, see [20]

%(3a2—b2) b<a
. b3
 sin® o _
/ Si axgcosbxdx: 1 a=>b (B1)
0 X T
6(3a—b)2 a<b<3a
0 3a < b.

To calculate the integrals in (70) and (73) using the software Mathematica [21] we get

/"O SirP (ax) cogrx) e — _ Sa®msignja —r]  Sarmsignk —r]  5rm signja — r]
0

x3 - 64 32 64
4542 sign[3z — ] 15armsign[3z —r]  5rém sign[3a — r]
128 a 64 128
25a°m sign[sa —r]  Barmsign[x —r]  r2m sign[x — r]
a 128 64 a 128
S5a%m signfa +r]  Sarmsignja +r]  5r?7 signfa + r]
B 64 B 32 B 64
45427 sign[3a +r]  15armsign[3 +r]  5rém sign[3a + ]
128 64 128
_ 25z sign[& +r]  Sarmsign[s +r]  rPmsign[sa + 7] (82)
128 64 128
/‘00 sin®(ax) sin? (%) cogrx) e — 34?7 signfa — r] N 3arm signfa — r]
0 x3 64 32
3rlrsignfa —r]  aPmsign[2a —r]  armsign[2a — r]
- 64 16 B 16
rPrsign[2a —r]  9aPmsign[3 —r]  3Sarmsign[3 — r]
64 64 - 32
r’rsign[ —r]  a’msign[da —r]  arm signfa — r]
64 B 8 16
r?mwsignfda —r]  3a’msigna +r]  3armsignfa + r]
a 128 a 64 a 32
3l signfu +r]  aPmsign[2+r]  armsign[2a + r]
B 64 16 16
rPrsign[2a +r]  9aPmsign[3 +r]  3armsign[ + 7]
64 64 32
r’rsign[ +r]  a’msign[da +r]  armsignfda + r]
64 B 8 a 16
o
_r'm sign[4 + r] (83)

128
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where

sighx =

McQuarrie [22] has evaluated the integrals in (97) as follows:

W3,,.(1,1Lr)=

1
2:2'2°2

Wis,.(1,227r)=
2°2°2°2

W3,,.2227r) =
2°2°2°2
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